2012年9月1日 星期六

John Carmack密码:0x5f3759df


John Carmack密码:0x5f3759df
Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再厉,doom, doomII, Quake…每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

最近,QUAKE的开发商ID SOFTWARE遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。

这是QUAKE-III原代码的下载地址:http://www.fileshack.com/file.x?fid=7547

我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。那么找到最底层的数学运算函数(在game/code/q_math.c),必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。

在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:

float Q_rsqrt( float number )
{
   long i;
   float x2, y;
   const float threehalfs = 1.5F;
   x2 = number * 0.5F;
   y   = number;
   i   = * ( long * ) &y;   // evil floating point bit level hacking
   i   = 0x5f3759df – ( i >> 1 ); // what the fuck?
   y   = * ( float * ) &i;
   y   = y * ( threehalfs – ( x2 * y * y ) ); // 1st iteration
   // y   = y * ( threehalfs – ( x2 * y * y ) ); // 2nd iteration, this can be removed

   #ifndef Q3_VM
   #ifdef __linux__
     assert( !isnan(y) ); // bk010122 – FPE?
   #endif
   #endif
   return y;
}

函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。
注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!

这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the ***?”的一句
      i   = 0x5f3759df – ( i >> 1 );
再加上y   = y * ( threehalfs – ( x2 * y * y ) );
两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f’(x)来不断的逼近f(x)=a的根。
简单来说比如求平方根,f(x)=x^2=a ,f’(x)= 2*x,f(x)/f’(x)=x/2,把f(x)代入
x-f(x)/f’(x)后有(x+a/x)/2,现在我们选a=5,选一个猜测值比如2,
那么我们可以这么算
5/2 = 2.5; (2.5+2)/2 = 2.25; 5/2.25 = xxx; (2.25+xxx)/2 = xxxx …
这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的
但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值
就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛顿迭代就可以达到我们所需要的精度.

好吧 如果这个还不算NB,接着看:

普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的
这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个
最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?
传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始
值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是
卡马克赢了… 谁也不知道卡马克是怎么找到这个数字的。
最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数
字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴
力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,”Fast Inverse Square Root”。

=======================================================
SquareRootFloat函数最关键的一句就是 i=0x5f3759df-(i>>1);
以下是对它的部分解释:

牛顿迭代法最关键的地方在于估计第一个近似根。如果该近似根与真根足够靠近的话,那么只需要少数几次迭代,就可以得到满意的解。

接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:

i = 0x5f3759df – (i >> 1);         // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的:float类型的数据在32位系统上是这样表示的。

bits:31 30 … 0
31:符号位
30-23:共8位,保存指数(E)
22-0:共23位,保存尾数(M)
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^(-E/2)。现在就十分清晰了。语句 i>>1其工作就是将指数除以2,实现2^(E/2)的部分。而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。

============================================

参考:
最后,给出最精简的1/sqrt()函数:

float InvSqrt(float x)
{
   float xhalf = 0.5f*x;
   int i = *(int*)&x; // get bits for floating VALUE
   i = 0x5f375a86- (i>>1); // gives initial guess y0
   x = *(float*)&i; // convert bits BACKto float
   x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
   return x;
}

PS. 这个 之所以重要,是因为求 开根号倒数 这个动作在 3D 运算 (向量运算的部份) 里面常常会用到,如果你用最原始的 sqrt() 然后再倒数的话,速度比上面的这个版本大概慢了四倍吧… XD

資料來源:

沒有留言:

一個小故事讓我們明白資金流通的意義

“又是炎熱小鎮慵懶的一天。太陽高掛,街道無人,每個人都債台高築,靠信用度日。這時,從外地來了一位有錢的旅客,他進了一家旅館,拿出一張1000 元鈔票放在櫃檯,說想先看看房間,挑一間合適的過夜,就在此人上樓的時候---- 店主抓了這張1000 元鈔,跑到隔壁屠戶那裡支付了他欠的肉錢...